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Abstract. It has been pointed out that cavitation, i.e., super cavitation regime may occur in 

a nozzle of pressure atomizers, and may influence atomization of a liquid jet discharged 

from the 2D nozzle. Once we clarify the mechanism of atomization induced by the 

supercavitation, we will be able to develop new atomizers in which the atomization 

mechanism is utilized more efficiently. Hence, this study has been conducted to clarify the 

mechanism in the 2D nozzle. As a result, the following conclusions are obtained: (1) The 

frequency of the shedding and collapse of cavitation clouds in the supercavitation regime 

agrees with that of strong turbulence near the exit; (2) When the trace of a cavitation cloud 

comes out of the 2D nozzle, a ligament is formed at the liquid jet interface; (3) Strong 

turbulence is produced by the collapse of cavitation clouds near the exit of the 2D 

nozzle.and induces ligament formation, which, in turn, causes liquid jet atomization. 
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Introduction 
Cavitation is known to occur in nozzles of fuel injectors for Diesel engines and 

enhance atomization of a discharged liquid jet. In the previous study (1) we have confirmed 

that liquid jet atomization is enhanced when super cavitation regime is developed in a 2D 

nozzle. Our understanding on the mechanism of atomization by super cavitation is, 

however, rudimentary.  

A number of studies (2-5) have been conducted to clarify the mechanism. Wu et al. (2) 

have shown that vorticity in the boundary layer in a nozzle plays an important role in 

ligament formation at the liquid jet interface. He and Ruiz (3) measured liquid velocity inside 

a two-dimensional (2D) nozzle using a laser Doppler velocimetry (LDV). Oda and Yasuda (4) 

applied a particle tracking velocimetry (PTV) to a cavitation flow in a 2D nozzle. Both 

experiments showed that strong turbulence is produced near the cavitation zone, which 

might contribute to atomization.  

The relation among cavitation, turbulence and atomization, however, remains unclear. 

Hence, high-speed simultaneous visualizations of cavitation in a nozzle and liquid jet 

interfaces are carried out. We conduct high-speed visualization using a 2D nozzle, which 

enables us to observe the structure of cavitation and to measure liquid velocity in the 

nozzle under various conditions of Reynolds and cavitation numbers.  

The cavitation number σ and the Reynolds number Re as indicators of cavitation in a nozzle 

are defined by (1):  
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where Pb is the back pressure (pressure at the exit of nozzle), Pv the vapor saturation 

pressure, ρL the liquid density, VN the mean liquid velocity in the nozzle, WN the nozzle 

width and νL the liquid kinematic viscosity.  Liquid velocity in the 2D nozzle is measured 

using LDV to investigate the effects of cavitation on turbulence. 
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Materials and Methods  
Schematic of the experimental setup is shown in Fig. 1. Filtered tap water of 293K in 

temperature was injected through various nozzles of different geometries and dimensions 

into ambient air of 0.1 MPa in pressure. Water flow rate was measured using a flowmeter 

(Nippon flow cell, D10A3225). Filtered tap water at room temperature was injected from 

the 2D nozzle into ambient air.  

In order to examine the relation between cavitation and the deformation of liquid jet 

interfaces in the supercavitation regime, A high-speed digital video camera (Redlake, 

MotionPro, HS-1, 32 x 1280 pixels, frame rate = 20000 fps) was used to visualize evolution 

of cavitation in the nozzle and liquid jet deformation near the nozzle exit. Since the 

refractive index of the acrylic plate of the nozzle is higher than that of air, an acrylic plate 

was placed between the liquid jet and the camera to match the optical distance from the 

camera to the cavitation and the distance from the camera to the liquid jet. In the high 

frame rate imaging, the image size was limited to 32 x 1280 pixels. Hence, the acrylic plate 

was tilted to capture both cavitation and jet interfaces within the narrow visualized region. 
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                     (a) top view                          (b) front view 

Figure 1. Experimental setup for simultaneous visualizations of cavitation and liquid jet (2D 

nozzle). 

 

Schematics of 2D and cylindrical nozzles are shown in Figs. 2 (a) and (b), 

respectively. A schematic diagram of a photographic system to observe cavitation and a 

liquid jet is shown in Fig. 3. The nozzle was placed between the light source (Nissin 

Electronic, MS-100 & LH-15M, duration 12 µs) and the digital camera (Nikon D70, 

3008x2000 pixels). Images of cavitation and the liquid jet were taken by using the digital 

camera.  
 

            

 

 

 

 

 

 

 

 

Figure 2. Schematics of 2D and cylindrical nozzles. 
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A laser Doppler velocimetry (LDV) was used to measure liquid velocity in the nozzle. 

Figure 3 illustrates the measurement system. The system consisted of the Ar-ion laser, the 

LDV probe, the receiver and the signal processing system. Streamwise and lateral velocity 

components were measured. 
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Fig. 3 Experimental setup for LDV measurement. 

 

The measurement locations and coordinate system are shown in Fig.4, where x is the 

lateral distance from the nozzle center, y the streamwise distance from the nozzle inlet, u 

and v the streamwise and lateral components of the local instantaneous liquid velocity. A 

3D traverse system with the minimum scale of 10 Dm was used to move the measurement 

volume. The mean velocities and RMS of the fluctuation components (turbulence intensities) 

u' and v' were obtained from 50000 data of the local instantaneous liquid velocities u and v 

measured at each point.  
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Figure 4 Locations of LDV measurements. 

 
Mechanism of Cavitation-induced Atomization 

Time-series images of cavitation in the 2D nozzle and the liquid jet are shown in Fig. 

5. A cavitation cloud is shed at time t = 0.4 ms and collapses near the exit at t = 0.75 ms. 

A ligament is formed when the trace of the cavitation cloud comes out of the nozzle at t = 

0.95 ms. The arrows in the figure represent the paths moving at the mean liquid velocity 
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VN. By observing 10000 images it is found that the frequencies of the shedding and collapse 

of cavitation clouds are about 1 to 4 kHz. Figure 6 illustrates the ligament formation 

induced by the collapse of a cavitation cloud in the 2D nozzle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Simultaneous visualization of cavitation and liquid jet interface (2D nozzle, D = 

0,69; 20000 fps).  
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Figure 6. Ligament formation induced by cavitation in the two-dimensional nozzle. (a) 

before the collapse of a cavitation cloud  (b) after the collapse of the cavitation cloud 

 

Fig. 7 shows the power spectrum of the area-averaged intensity in the region (32 x 

40 pixels) of the high-speed images where cavitation clouds pass through (y = 12 mm). 

The intensity of the spectrum does not decrease in the range of about 1 to 4 kHz, which 

corresponds to the frequency of the cloud shedding. 

 The mean velocity vectors and RMS of 

the lateral component of velocity 

fluctuation u' are plotted in Fig. 8. 

Strong turbulence appears just 

downstream of the cavitation region (y 

= 4.05 mm at Dc' = 1.06, y = 8.83 mm 

for Dc' = 0.98, y = 15 mm for Dc' = 

0.91), and the turbulence intensity u' 

decreases as y increases. This result 

indicates that the turbulence intensity 

increases just below the cavitation zone, 

and strong turbulence can reach the 

nozzle exit only in the supercavitation 

regime. 
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(a) σ=1.23 (no cavitation)               σ =1.0 (developing cavitation) 
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(b) σ =0.82 (developing cavitation)                 (c) σ =0.69 (supercavitation) 

Figure 8. Turbulence intensity in the 2D nozzle (continued) 
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Figure 7.  Power spectrum of image data 
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The power spectrum of the lateral component of the velocity near the exit (y = 15 

mm) is shown in Fig. 8. A high intensity appears in the range of about 1 to 4 kHz in the 

supercavitation regime (Dc' = 0.91). The frequency agrees with that of the shedding of the 

cavitation clouds and that of the ligament formation. Hence, the strong turbulence induced 

by the collapse of cavitation clouds near the exit induces ligament formation, which, in turn, 

initiates atomization. 

 

Figure 8 Power spectrum of LDV data near the exit (y = 15 mm) (Left: 
σ = 0.82 (developing cavitation, Right: σ = 0.69 (supercavitation) 

 

Conclusions 
Cavitation in a two-dimensional (2D) nozzle and a cylindrical nozzle and interfaces of 

liquid jets discharged from the nozzles are simultaneously visualized using a high-speed 

camera to investigate the mechanism of cavitation-induced atomization. In the high-speed 

visualization for the 2D nozzle, an acrylic plate is placed between the liquid jet and the 

camera to match the optical distances. The plate is slanted to capture cavitation and 

ligament formation in a narrow frame of the camera. As a result, the following conclusions 

are obtained: (1) The frequency of the shedding and collapse of cavitation clouds in the 

supercavitation regime agrees with that of strong turbulence near the exit, (2) When the 

trace of a cavitation cloud comes out of the nozzle, a ligament is formed at the liquid jet 

interface, (3) Strong turbulence is produced by the collapse of cavitation clouds near the 

exit and induces ligament formation, which, in turn, causes liquid jet atomization. 
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